
上載荷重の計算

(1) 計算条件

壁高		Н	=	2.500	m
盛土高		H1	=	0.500	m
法尻までの離れ		X1	=	1.000	m
法面幅		X2	=	0.500	m
盛土の単位体積重量	量	t	=	18.000	kN/m ³
等分布荷重		Q1	=	10.000	kN/m^2
自動車荷重無	乗し	Р	=	0	kN
衝擊係数		i	=	0.300	
後輪外側から壁まで	の距離	ŧΧ'	=	1.300	m

(2) 等分布荷重の換算

載荷重の換算はフリューリッとの地盤応力の理論を応用し、次式で算定する。

$$qq = Q1 \cdot Iq$$

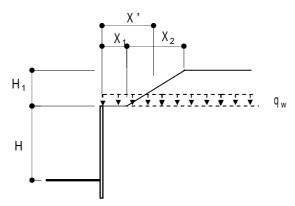
$$= 10.00 \times 0.563 = 5.630 \text{ kN/m}^2$$

$$Iq = 1 + \left(\frac{X}{H + H_1}\right)^2 - \frac{2}{1} \cdot \left(1 + \left(\frac{X}{H + H_1}\right)^2\right) \cdot \tan^{-1}\left(\frac{X}{H + H_1}\right) - \frac{2}{1} \cdot \left(\frac{X}{H + H_1}\right)$$

$$= 0.563$$

ここに、

qa;換算後の等分布荷重(kN/m2)


lq;等分荷重換算係数

Q ;各種荷重の載荷位置における等分布荷重 (kN/m^2) H ;壁高(m)

X ;壁背面からの載荷位置(m)

$$X = X_1 + X_2 = 1.5 \text{ m}$$

 $\left(\frac{X}{H + H_1}\right) = \frac{1.500}{3.000} = 0.500$

(3) 盛土荷重の換算

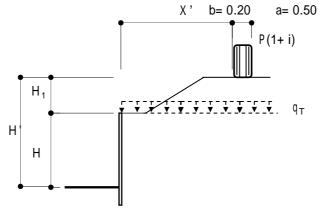
$$qw = t \cdot H1 \cdot Iw$$

$$= 18.00 \times 0.500 \times 0.563 = 5.067 \text{ kN/m}^2$$

$$Iw = 1 + \left(\frac{X'}{H}\right)^{2} - \frac{2}{1} \cdot \left(1 + \left(\frac{X'}{H}\right)^{2}\right) \cdot \tan^{-1}\left(\frac{X'}{H}\right) - \frac{2}{1} \cdot \left(\frac{X'}{H}\right)$$

$$= 0.563$$

ここに,


qw;換算後の等分布荷重(kN/m2)

lw;等分荷重換算係数

H ;壁高(m) X ;仮想距離(m)

$$X = X_1 + X_2/2 = 1.250 \text{ m}$$

 $\frac{X}{H} = \frac{1.25}{2.5} = 0.500$

(4) 自動車荷重の換算

$$q_T = P(1 + i) \cdot I_T / H^2$$

=
$$0.00 \times (1 + 0.30) \times 0.129 / 2.500^{-2}$$

= 0.000 k N/m2

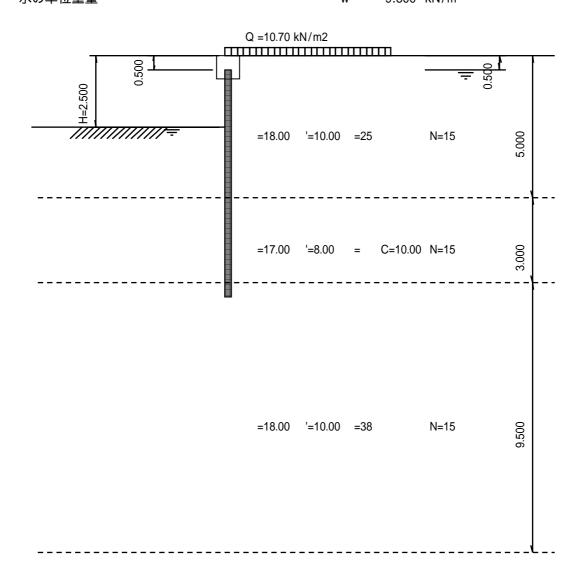
$$I_{T} = \frac{2}{b + 2H'} \{ (X' - H') + (a + X' + H') \ln \frac{a + X' + H'}{a + 2X'} \}$$
= 0.129

ここに , q_T ;換算後の等分布荷重(kN/m2)

I_T;等分荷重換算係数 P ;後輪荷重(kN) i ;衝擊係数

H' = H + H1 = 3.000 m

(5) 換算等分布荷重の合計


・ 等分布荷重の換算 $q_q = 5.630 \text{ kN/m}^2$ · 盛土荷重の換算 $q_w = 5.067 \text{ kN/m}^2$

 $q_T = 0.000 \text{ k N/m}^2$ ・ 自動車荷重の換算

換算等分布荷重 $Q = 10.697 \text{ k N/m}^2$

自立式矢板土留工

(1)設計条件	常時			
上載荷重		Q =	10.697	kN/m^2
掘 削 高 さ		H =	2.500	m
地下水位(地表面が	^らの深さ)	Hw =	0.500	m
前面水位(前面の水		L w =	0.000	m
横方向地盤反力係	数	Kh =	20748	kN/m ³
圧密平衡係数反力	係数	K c =	0.500	
許容たわみ量		a =	10.0	
前面載荷重		W =	0.000	kN/m^2
水の単位重量		w =	9.800	kN/m ³

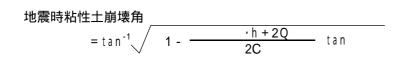
土質条件

深度	土の単位重	重量 kN/m ³	内部摩	粘着力	壁面摩捷	察角	N値
m	空空	水中	擦角。	kN/cm ²	主働	受働	
5.000	18.00	10.00	25.0	0.00	15.0	-15.0	10
8.000	17.00	8.00		10.00	15.0	-15.0	10
17.500	18.00	10.00	38.0	0.00	15.0	-15.0	10

受動側地盤改良

深度	土の単位重量 kN/m ³		土の単位重量 kN/m³ 内部		内部摩	粘着力
m	空中	水中	擦角。	kN/cm ²		

矢板条件


使用矢板 鋼矢板 SP-

曲げモーメント算出の継ぎ手係数I =1.0断面係数の継ぎ手係数Z =1.0根入長算出の継ぎ手係数I =1.0

腐食の考慮
断面決定のみ

(2)計算層

深度	層厚 h	単位重量	内部摩 擦角	粘着力 C	h+Q	whw	設計震度	合成角	地震時 粘性土
m	m	Kn/m ³	(度)	kN/cm ²	kN/cm ²	kN/cm ²	k , k'	(度)	崩壊角
			(/				,	(/	
0.500	0.500	18.00	25.0		19.697				
0.500									
2.500	2.000	10.00	25.0		39.697	19.600			
2.500									
5.000	2.500	10.00	25.0		64.697	44.100			
5.000									
8.000	3.000	8.00		10.00	88.697	73.500			
8.000									
17.500	9.500	10.00	38.0		183.697	166.600			
	_				_			_	

(3) 荷重強度

深度	土圧		土圧		Kcによる	水圧	採用主働	設計震度
m	Ka	Кр	主働 Pa1	受働Pp	土圧 Pa2	Pw	土圧水圧	
		-	kN/m ²	kN/m^2	kN/m^2	kN/m^2	Pa kN/m²	k , k'
0.000	0.351		3.76				3.76	
0.500	0.351		6.91				6.91	
0.500	0.351		6.91				6.91	
2.500	0.351		13.93			19.60	33.53	
2.500	0.351	3.724	13.93			19.60	33.53	
5.000	0.351	3.724	22.71	93.10		19.60	42.31	
5.000			44.70	45.00	32.35	19.60	64.30	
8.000			68.70	69.00	44.35	19.60	88.30	
8.000	0.212	7.563	18.80	370.59		19.60	38.40	
17.500	0.212	7.563	38.94	1089.07		19.60	58.54	
							I	

$$Ka = \frac{\cos^{2}(-)}{\cos^{2}(-) \cdot \left(1 + \sqrt{\frac{\sin(+) \cdot \sin(--)}{\cos(+) \cdot \cos(-)}}\right)^{2}}$$

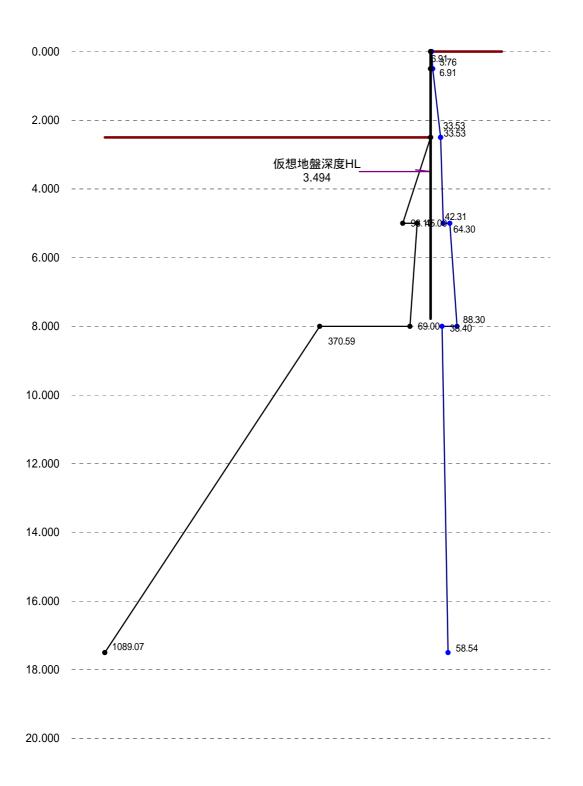
$$Kp = \frac{\cos^{2}(-)}{\cos^{2}(-) \cdot \left(1 - \sqrt{\frac{\sin(-) \cdot \sin(+-)}{\cos(-) \cdot \cos(-)}}\right)^{2}}$$

$$t = t = 0$$

主働土圧の算定式

砂質土·中間土 Pa1= Ka(h+Q) - 2C Ka

粘性土 Pa1= h + Q - 2C Pa2= Kc·(h + Q) Pa1、Pa2の大きい値をPaとする。


粘性土(地震時 Pa1= $\frac{(h+Q)\cdot \sin(h+Q)\cdot \sin(h+Q)}{\cos h\cdot \sin h}$ $\frac{C}{\cos h\cdot \sin h}$

受働土圧の算定式

(4) 仮想地盤面の計算

掘削地盤面付近では、根入部の反力が地盤の抵抗力より一般に大きくなることが予想され、この部分は塑性領域と考える。その深さは主働土圧と受働土圧がつり合う深さで、これを仮想地盤面とする。

仮想地盤面 Ho = 0.994 m

(5) 仮想地盤面における土圧の計算

5-1 土圧及びモーメントの計算

	土圧水圧	土圧水圧		水平力	作用位置	モーメント		
深度	(上層面)	(下層面)	作用範囲	Р	L	M=P• L	備	考
m	kN/m^2	kN/m^2	m	kN	m	kN⋅m		
0.500	3.76	6.91	0.500	2.67	3.219	8.587		
2.500	6.91	33.53	2.000	40.45	1.775	71.780		
3.494	33.53	0.00	0.994	16.67	0.663	11.044		
計				59.78		91.411		

5-2 土圧作用位置

hp = M / P = 91.411 / 59.782 = 1.529 m

(6) 矢板の選定

鋼矢板 SP-

- 1917	JOCHA OI					
			腐食無し	腐食有り	採用値	:腐食有り
	断面2次モーメン	/ト I (cm4)	16800	11424		11424
	断面係数	Z (cm3)	1340	911		911

 $=^4$ (k_h·B/(4E I·)) = 0.69 m⁻¹

EI: 単位幅当たりの矢板の曲げ剛性 EI = 2.0 × 11424 = 22848 kN·m²

B:矢板幅(単位当り幅 1m として計算する。)

: 継手係数 = 1.0

• hp = 1.055 $2 \cdot hp = 2.110$ $1+2 \cdot hp = 3.110$

Kh: 水平方向地盤係数 Kh = 20748 kN/m³

6-1 最大曲げモーメント

最大曲げモーメントMmax及びその位置Lmは次式により求める。

Mmax = Mp ×
$$\frac{\sqrt{(1+2 \cdot hp)^2+1}}{2 \cdot hp}$$
 × $\exp(-\tan^{-1} \frac{1}{1+2 \cdot hp})$
= 91.411 × $\frac{\sqrt{3.110^2+1}}{2.110}$ × $\exp(-\tan^{-1} \frac{1}{3.110})$
= 103.69 kN·m
Lm = 1/ × $\tan^{-1} \frac{1}{1+2 \cdot hp}$ = 0.451 m

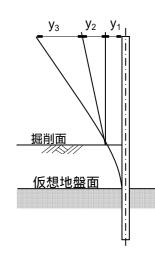
6-2 引張応力

引張応力 s は次式により求める。

$$s = \frac{Mmax}{Z} = \frac{103.690}{911.2} \times 1000 = 114 \text{ N/mm}^2 \cdots \text{OK}$$

矢板断面係数 Z = 911.2 cm³ 継手係数 = 1.0 許容応力度 sa = 180 N/mm²

6-3 たわみ量の計算


矢板天端の変位量は次式によって求める

仮想地盤面におけるたわみ量

y1=
$$\frac{1+ \cdot hp}{2 \cdot E \cdot I \cdot \cdot \cdot ^3}$$
 × Pa = 0.818 cm 仮想地盤面におけるたわみ角 × (H + Ho)

$$y3 = \frac{(3(H+Ho)-hp) \times hp^2 \times Pa}{6E \cdot I \times} = 0.913 \text{ cm}$$

矢板天端の最大変位量

(7) 矢板長の計算

根入れ長の計算に使用する は、断面2次モーメントの値を低減しない値とする。

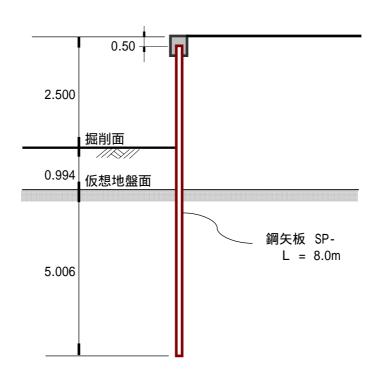
$$=$$
 $(k_h \cdot B/(4E \cdot I)) = 0.627 \text{ m}^{-1}$

EI:単位幅当たりの矢板の曲げ剛性

 $EI = 2.0 \times 16800 = 33600 \text{ kN} \cdot \text{m}^2$

Kh: 水平方向地盤係数 Kh = 20748 kN/m³ B: 矢板幅(単位当り幅 1m として計算する。)

: 継手係数 = 1.0


: 特性値(m⁻¹)

根入長 = Ho + 3.0/ = 0.994 + 3.0 / 0.627 = 5.779 m

矢板長 L = H - 0.50 + 3.0/ = 7.779

8.0 m

したがって 鋼矢板 SP- L = 8.0m を使用する。

