
ブロック積み安定計算例

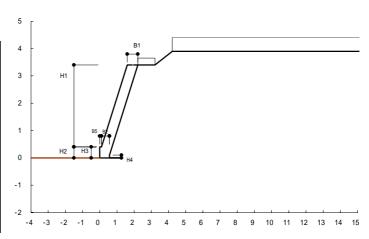
1. 設計条件

(1)形状寸法

壁高		H1 =	3.000	m
基礎コンクリート	(基部)	H2 =	0.400	m
	(先端)	H3 =	0.400	m
	(先端)	H4 =	0.100	m
ブロック幅	(天端)	B1 =	0.615	m
ブロック幅	(基部)	B2 =	0.465	m
壁勾配 1:0.5		B3 =	1.500	m
基礎天端幅		B5 =	0.100	m

(2)地震時係数

地震水平震度 Kh= 地震時上載荷重 無し


(3)単位重量及び土質諸元

コンケリートの単位重量 23 k N/m^{3} 背面土の単位重量 s = 18.0 k N/m^3 背面土の内部摩擦角 30.0 度 滑動摩擦係数 tan _B= 0.60 入力値 地盤許容支持力(常時) qa = 100.00 k N/m^2 C = 10.0 k N/m^2 地盤の粘着力 壁 常時(土と土) 30.000 面 常時(土とコンクリート) 20.000

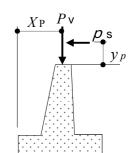
地震時(土と土) 30.000 角 地震時(土とコンクリート) = 20.000

(4)背面形状

X(m)	Y(m)	$q(kN/m^2)$
1.000	0.000	5.000
2.000	0.500	
20.000	0.500	10.000

(5)任意荷重

荷重強度 ps= kN pv= kN/m当り 作用高さ vp= m xp= m


作用高さ $y_P=$ m xp= 荷重幅 $b_p=$ m当り

□常時考慮 □地震時考慮 □地震時考慮 □地震時考慮

(6) 許容応力度

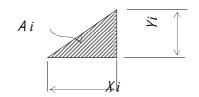
設計基準強度 $\sigma_{ck}=$ 21 N/mm² 許容曲が圧縮応力度 $\sigma_{ca}=$ 7 N/mm² 許容引張応力度 $\tau_{ca}=$ 0.7 N/mm² 許容引張応力度 $\sigma_{sa}=$ 180 N/mm² 計容付着応力度 $\tau_{a}=$ 2.1 N/mm²

無筋コンクリート許容引張応力度 ca = 0.26 N/mm²

(7)配筋計画

	鉄筋径1	鉄筋径2	ピッチ	中心かぶり	鉄筋量	周長
	D (mm)	D (mm)	@ (mm)	t(mm)	A s (mm ²)	U(mm)
たて壁(基部)	無筋					
(中間部)2.00 m	無筋					
前面フーチング	無筋					
背面フーチング	無筋					

(8) 重量・重心計算式


擁壁の断面積

擁壁の重量 $W = A \cdot \gamma c =$

a)面積は座標系より倍面積法によって求める。

A =

No	X	Y	Xn+1 - Xn-1	倍面積
1	0.000	0.000	-0.565	0.000
2	0.000	0.400	0.100	0.040
3	0.100	0.400	0.100	0.040
4	0.100	0.400	1.500	0.600
5	1.600	3.400	2.115	7.191
6	2.215	3.400	-1.035	-3.519
7	0.565	0.100	-1.650	-0.165
8	0.565	0.100	0.000	0.000
9	0.565	0.100	0.000	0.000
10	0.565	0.000	-0.565	0.000
倍面積				4.187

$$(X,Y) = \left(\frac{\sum \left\{ \left(Ai \cdot (\Delta Xi \cdot 2/3 + Xi) \right\}}{A} \right) \frac{\sum \left\{ \left(Ai \cdot (\Delta Yi \cdot 1/3 + Yi) \right\}}{A} \right)$$

 $2.094 \times 23.00 =$

4.187 /2

2.094 m2

48.162 kN

2. 安定計算(常時)

(1) 外力

(1) 7173	(.) >1>3						
a) 荷 重	鉛直荷重	作用距離	モーメント				
	(kN)	(m)	(kN• m)				
躯体	48.151	1.057	50.895				
	48.151		50.895				

b) 土 圧

土圧の計算は試行くさび法による方法を用いる。

壁面摩擦角 δ = 20.000 (度) = 10.246 (度)

背面の勾配 j= -26.565 (度)

すべり角 α= 43 (度)

すべり面上の土重 *W =* 69.442 kN

すべり面上の上載荷重 Q = 10.322 kN

最大土圧力 $Pa = \frac{(W+Q) \times sin(--)}{cos(---j)} = 19.042 \text{ kN}$

主働土圧係数 $KA=2\times Pa/(\gamma s \cdot h^2)=0.183$

水平土圧係数 $KH=Ka\times cos(\delta+j)=0.182$ 鉛直土圧係数 $KV=Ka\times sin(\delta+j)=-0.021$

 $\begin{bmatrix} 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{bmatrix}$

土 圧(kN)		作用距離(m)	H-メント(ト	(N• m)
$PH=1/2\times h^2\times \gamma s\times KH$	18.935	1.133	$My=PH\times Y$	21.453
$PV=1/2 \times h^2 \times \gamma s \times KV$	-2.185	1.082	$Mx=PV\times X$	-2.364

但しh : 土圧高 3.400 m

PH:背面土による水平土圧

PV:背面土による鉛直土圧 土圧作用面は実背面とする。

土圧

鉛直力の合計 ΣV = 45.966 kN 水平力の合計 ΣH = 18.935 kN モーメント M = 27.078 kN

(M:前面フーチング先端に対する回転モーメント)

(2) 転倒に対する検討

$$e = B/2 - M/N = \frac{0.565}{2} - \frac{27.078}{45.966} = -0.307 \text{ m}$$

だだし、B: フーチング長

(3) 滑動に対する検討

$$Fs = \frac{N \cdot \mu + C \cdot B}{H} = \frac{45.966 \times 0.60}{18.935} = 1.755 \quad 1.5 \cdot \cdot \cdot \cdot \text{OK}$$

(4) 地盤支持力の検討

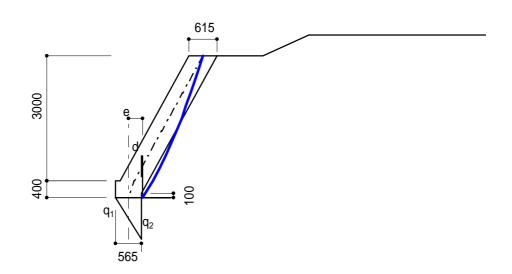
$$d = B/2 - e = 0.5895 \text{ m}$$
作用幅
 $x = B = 0.565 \text{ m}$

H1 H3 H4

底面反力

$$q2=2 V/3d$$

 $q_1 = 0.000 kN/m^2$
 $q_2 = 51.983 kN/m^2$


許容支持力 qa = 100 kN/m2 より小さい ---- OK

3. 計算結果(直接基礎)

(常時)

1) 安定計算結果

示力線図

転倒条件 合力位置が底版中央1/3より前に出ないこと

深度	すべり角	土塊重量	載荷重	最大土圧	合力位置	転倒
H(m)	(度)	W(kN)	Q(kN)	Pmax(kN)	e(m)	判定
0.300	45.0	0.405	0.000	0.113	-0.063	OK
0.600	45.0	1.620	0.000	0.451	-0.121	OK
0.900	45.0	3.645	0.000	1.014	-0.175	OK
1.200	45.0	6.480	0.000	1.803	-0.224	OK
1.500	40.0	14.024	5.000	3.446	-0.289	OK
1.800	43.0	16.699	5.000	5.180	-0.322	OK
2.100	45.0	19.867	5.000	6.921	-0.355	OK
2.400	47.0	22.434	5.000	8.751	-0.386	OK
2.700	41.0	47.563	8.312	11.183	-0.402	OK
3.000	42.0	54.945	8.871	13.997	-0.407	OK
3.400	43.0	69.442	10.322	19.042	-0.307	OK

	計算値	許容値	判定
支持力	51.98	100.0	OK
滑 動	1.76	1.50	OK